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The “signal” from an astronomical radio source is hard to distinguish from the random thermal noise 

present in a receiver.  Power measurements of both, as a function of time, would look like randomly 

varying functions, with some mean and some standard deviation.  The power when pointing at a radio 

source might just be a little stronger, and therefore noticeable in beam switching, or drift scans, or it 

might be noticeable in some part of the spectrum (e.g., thermal noise has a “white noise” spectrum --- it 

has a “flat” spectrum, while a 21cm emission line source will certainly not have a flat spectrum). 

The statistical nature of both the signal and the noise are the same.  Stated in terms of voltage 

measured in the system, the voltage varies with a random amplitude and phase, with frequencies 

limited by the bandpass of the system (of bandwidth B).  To take account of the randomly varying phase, 

one often mathematically describes the voltage as made up of real and imaginary components, each of 

which varies as an independent Gaussian variable of zero mean.  The variations of the amplitude of the 

voltage can be described by a Rayleigh distribution (the Maxwell-Boltzmann distribution of speeds in a 

gas is a Rayleigh distribution).  Finally, received power is proportional to the square of the voltage, so 

the power follows an exponential distribution, which has an rms equal to the mean value. 

An observation is done by “integrating” over some integration time τ, i.e., averaging the power over 

time τ.  The averaged power for the observation is an estimate (or measurement) of the true mean 

power.  The uncertainty in the measurement will be reduced for longer integration times, as usual for 

measurements of means.  For a bandwidth of B, the time scale on which the output power varies is 1/B.  

Therefore averaging over time τ means averaging about � � �� independent measurements of the 

power.  Thus the uncertainty in the average is equal to rms of the output power, reduced by the factor 

1/√��.   Because the output power has an exponential probability distribution, the rms is equal to the 

mean.  Finally, since powers can be expressed as equivalent noise temperatures T, and the system 

temperature Tsys is the power being measured, this result can be written as 
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where �	 is the rms in the measured mean temperature, thus the uncertainty in the measured mean 

temperature.  This equation is the so-called “radiometer equation.” 

The signal you want to measure is the antenna temperature TA --- the contribution to the system 

temperature due to the radio source you are observing. The system temperature has contributions due 

to the receiver temperature, the sky temperature, and a contribution due to the source.  Some or one of 

these contributions may dominate the system temperature.  The signal-to-noise ratio is 
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Note that the signal-to-noise ratio for a measurement is proportional to √��, and thus the usual result 

has been obtained: the longer the integration time, and/or the larger the bandwidth, the larger is the 

signal-to-noise ratio (this is true in optical astronomy also).  The following pages give the physical and 

mathematical details of these concepts. 


















